
 Understanding objects
 Domain model
 Behavior
 Interaction
 Understanding classes
 Interfaces & inheritance
 Understanding test cases

Cooperative Systems
FernUniversität in Hagen

Germany

Goals

COINED
Collaborative Examination of Object Interaction

 Users direct objects to simulate responses to messages
 Dynamics are visualized in a shared diagram editor
 Objects can receive any message
 Unknown messages help to refine the classes
 Message traces are the starting points for the generation of
 unit tests and class stubs

Approach

The COINED Environment

 COINED is an Eclipse plugin that integrates with the Eclipse Java development environment
 Currently planning and looking for classroom application in order to conduct user studies
 Tools will be combined with other plugins, e.g., for supporting distributed planning games
 To request the research prototype contact Till Schümmer (till.schuemmer@fernuni-hagen.de)

Current Status and Evaluation

Collaboration Space

Users can meet in an
object space and start
to direct instances of a
class. All users share
the same view on the
object space.

Object Representation

Each object shows the
director who takes care
of the instance. Active
objects are highlighted.
Objects that are part of
the current execution
stack are shown with a
coloured user icon.
Other objects use a
faded icon.

Message Flow

Messages and answer
values of the current
message history
decorate object
relations. Users can
control the depth of the
message history shown
in the diagram.

Object Repository

The directing user keeps
track of all her objects and
can manipulate them when
active. Foreign objects are
shown but non-directing
users can only send
messages to the object.

Class Repository

All users can access all
classes to investigate
interfaces or modify
methods. They can become
a class director to create
new instances and control
the instances' behavior.

Test-Case Generator

The history keeps track of message
sends and the created return values.
These are used to generate automatic
Unit tests.

To ease the implementation, stubs of
the used classes can also be created.

Message History

Messages are stored for
later reference. Users
can inspect the
message flow to reflect
on the interaction that
took place in the
simulation.

Processing Area

When objects receive a message, it is displayed in the processing area. The
director has the task of generating a response to the message. This can
mean that local values are stored or manipulated, attributes of the receiver
are updated, or new messages are sent to objects known or created by the
receiver. Values can be dragged from the processing area to attributes of
the active object. When a message is sent, control is passed on to the
director of the receiving object.

Meta Communication

Users discuss the
current execution flow
using a persistent chat.
The chat transcript will
be part of the
generated class stubs
and the unit tests.

Till Schümmer & Petra Kösters
till.schuemmer@fernuni-hagen.de

