
COINED
Collaborative Object INteraction in EDucation

An environment for distributed object role play

Till Schümmer and Petra Kösters

Cooperative Systems, FernUniversität in Hagen
Universitätsstr. 1, 58084 Hagen, Germany

Till.Schuemmer@fernuni-hagen.de

Abstract. This paper discusses object-first approaches for better under-
standing the interaction between objects in an object-oriented software
system. We analyze different approaches for teaching object interaction
and derive the need for tool support that enables small groups to simulate
objects in a virtual object-interaction role play. To make this concrete,
COINED, a groupware application for object role plays, is presented. It
models a role play between students where each student directs a set of
objects and thereby reacts to messages sent to these objects. COINED
visualizes the interaction between the objects and further supports the
discussion of the objet interaction as well as the creation of shared arti-
facts from interaction logs.

1 Introduction

Understanding and teaching object-oriented concepts is still a challenging task.
The students need, among others, to understand what objects and classes are
and how objects interact with each others in order to solve a specific problem.
These challenges are different to challenges in traditional teaching of procedural
software development. While teaching procedural software development focuses
on empowering the students to create and implement algorithms, the object-
oriented view should first teach how to identify actors and how to describe inter-
action between these actors. Algorithms can then be understood as interaction
between the different objects instead of procedural recipes.

This shift in focus can be compared to the evolution from instructional learn-
ing where the teacher acts as an imperative information provider who transfers
information to the students to problem-based learning (PBL) [10] where the stu-
dents interact with each others to solve a problem. In PBL, the teacher creates
the context for a problem and challenges the students to explore different solu-
tions for this problem. In this process students contribute their knowledge and
conception of reality. Problems in PBL should be closely related to real life prob-
lems. In the case of object-oriented software development, such problems can be
derived from the daily project business in software development. One important
component of PBL is that students interact in a group that is supported by the



teacher when needed. This is one reason, why PBL has gained major interest
in the field of computer-supported collaborative learning (CSCL). For the area
of software development education, team-based PBL approaches are in addition
very close to real project work where software developers also interact in teams
to solve a specific problem.

When reviewing the state of the art in teaching object-oriented software
development, we unfortunately still observe many cases where traditional in-
structional teaching methods are used to transfer knowledge about the craft of
programming to the students. Consequently, these approaches often teach object-
oriented software development as if it was procedural software development and
as a result, the students often approach object-oriented software development
taking an algorithmic and procedural perspective. Although the students are of-
ten able to write nice code inside a method, the interplay of the different objects
is to our experience in most cases not well understood.

Joe Bergin shared this observation in a post of a objects-first versus objects-
late discussion at SIGCSE [4] where he nicely outlined how a new pedagogy
should look like:

If you want to teach a new paradigm [...] then you need to use new pedagogy.
[...] You can’t teach OO with a piece of chalk. You need to scaffold the process.
[...] This is because there are no 3 line OO programs that are interesting. [...]
Don’t try to teach just through code. Look at the Role Play papers in recent
SIGCEE proceedings and at the OOPSLA Educator’s symposium reports (or
on my web site). Use metaphor. Use games. Use cool ideas/demos for OO the
way you know to use cool ideas for other things. [...]
Learn the craft yourself (maybe you have). In Java prefer interfaces to inher-
itance. Use simple design patterns that you can motivate outside the coding
world (Strategy, decorator, ...). Prefer small classes to large. Prefer many (sim-
ple) objects to few (complex) objects. Put complexity in the interactions, not
the objects. [...] Students need to look at a big enough program (either in code,
or in metaphor, or in role play...) that the interactions between simple things
becomes apparent.1

We fully agree with this quote and want to repeat that the interaction be-
tween objects is to our experience one of the most important aspects when
teaching object-oriented software development. But how can we make the inter-
action between objects clear to students? And how can students learn to design
interaction between objects in a PBL setting? How can such an approach be sup-
ported as a group exercise that makes sense for the students also in the context
of larger software development projects?

These questions were our challenges for writing this paper. We will first
summarize current approaches for teaching object interaction (chapter 2). Our
focus will be on role play approaches. Although role play approaches are from
our perspective the right way to go, we identified problems with these approaches
especially in the context of distance education, in situations where traceability
1 http://listserv.acm.org/scripts/wa.exe?A2=ind0403D&L=SIGCSE-

MEMBERS&P=R2575&I=-3



is needed, or with respect to the balance between efforts and benefits. In section
3, we will present new tool support for collaborative object role play interaction,
the COINED environment.

2 Teaching Object Interaction

Several proposals have emphasized the importance of object interaction in teach-
ing object-oriented software development. Dı́az et al. [6] have highlighted that
message passing is one of the fundamental concepts that has to be learned by
students. We emphasize this observation and propose that students should un-
derstand that the process of sending a message is conceptionally different to the
process of invoking a method.

While invoking a method assumes that the invoker can control what the
system will do, the metaphor of sending a message is assuming that there will
be a receiver who will react to this message in a meaningful way. How this is
done is only determined by the receiver.

When looking at tools and processes for supporting an object-first view
in teaching and learning, we can observe that this fundamental difference is
reflected to a different degree. Basically, we can distinguish between two ap-
proaches: use-oriented approaches and simulation-oriented approaches. We will
discuss both approaches in the remaining part of this section and identify chal-
lenges for a next-generation role play support tool.

1. Use-oriented Approaches. This class of approaches provides the student with
a set of simple objects and puts the student in the role of the client. The ob-
jects themselves are represented and enacted by a computer. This means that
the objects need to be implemented before they can be used. Often, this im-
plementation is performed by the instructor and the student creates code using
these objects. In a next stage, the student may also derive new classes from the
predefined set of classes and thereby extend the object space.

Examples for supportive environments for use-oriented approaches are Karel
J. Robot [2] or Alice [5]. In both systems, the students can interact with objects
and see the effects of messages sent to these objects. However, the mental model
of this interaction is based on the metaphor of objects that can be controlled
from outside. The student becomes the master of a remote control, at least for
the first interactions with the objects.

In [5], the authors evaluated their teaching with Alice and concluded that the
students could get a good understanding of objects, relations between objects
and method invocation. However, we still see some problems with the approaches,
especially when considering them from a PBL perspective: firstly, the examples
are part of a simulated micro-cosmos that is different from real world problems
and secondly, the interaction in such a micro-cosmos is designed as student-
micro-cosmos interaction, which is in contradiction to group-based learning.

BlueJ [8] provides a different object-first approach, that is not restricted to
visual objects. Instead, any object can be presented as part of an UML diagram.



Users can invoke methods of the objects shown in order to change the state of the
object network. While this is a good approach for communicating static object
structures and object-oriented modularization, it has problems in teaching the
dynamics of an object-oriented software [9].

As Karel J. Robot and Alice, BlueJ only supports single students working
with the objects. There is no group support in the tool.

2. Simulation-oriented Approaches have a special emphasis on teaching the dy-
namics of object interaction. In these approaches, students simulate objects.
A very prominent class of simulation-based approaches is based on the the
metaphor of a real or virtual role play [3, 1].

In a bootstrap phase, an initial set of objects is created and students are
assigned to these objects. They have knowledge of other objects and can send
messages to these objects (i.e., to the students representing the object). After
receiving a message, the student looks up an appropriate script that tells him how
he should react to the message. In [3], the author presents a diagram notation for
documenting the interaction in a role play. Each student documents his object
by means of a CRC card. This card is placed on a whiteboard. Relations between
objects can be drawn on the whiteboard and each message that is sent to an
object is documented using an object interaction diagram notation. This is from
our perspective one of the biggest deficits of the approach: The manual creation
of the diagram which is time consuming and error-prone.

VirPlay [6] transfers the idea of role plays to a virtual multi-user environ-
ment. Users are represented as humanoid avatars who simulate their personal
object. They can send and react to messages. When users send a message to an-
other user (i.e., when an object sends a message to another object), the VirPlay
environments animates this and shows a virtual ball that is thrown from one
actor to the other. A spotlight visualizes who is currently playing.

One problem with VirPlay is that it lacks a visualization of the message his-
tory. Students cannot easily see which messages have been sent before. Another
problem is that the relations between the objects are not visible.

Challenges. The state of the art shows that there is no silver bullet for teaching
all aspects of object-orientation. But when looking at the experience made with
the different approaches and combining them with our own approaches in teach-
ing object-orientation, we arrive at five principles and challenges that should be
considered when teaching the dynamics of object-oriented software:

1. Object interaction first.
2. Messages are more important than methods.
3. Objects are more important than classes.
4. Objects know their interaction partners.
5. Students need an overview while respecting encapsulation.

The discussion of the role play approaches further showed that the interaction
of objects can be well communicated to the students by involving them in a role
play. Considering this and the potentials of PBL, we can state two additional
principle:



6. Group interaction: Students should collaboratively explore object interaction
and discuss alternatives.

7. Group interaction can be supported by a groupware system.

The latter point is especially important when teaching distributed students.
However, it also helps to activate students, especially when they can perform
parallel actions (e.g., discuss and simulate the object interaction at the same
time).

Finally, the motivation for performing the role play needs to be clear to the
students:

8. Reflection: the object interaction should be tracked and visualized to support
the reflection process.

9. Code generation: If the system provides means for creating real artifacts from
the interaction, the students can see a tangible result that further motivates
them to perform the role play.

To approach these challenges, we developed COINED, which will be pre-
sented in the next section.

3 COINED

COINED is a collaborative application that supports virtual co-located or dis-
tributed role play simulations of object-oriented systems (addressing issues 6
and 7 of the previous section). Developed as a part of the Eclipse IDE, it is
intended to be used by a group of students in introductional courses as well as
in advanced courses. In the first case, the students will be provided with a set
of pre-fabricated objects and their task is to simulate the interaction between
these objects. In the latter case, the students start with a blank object inter-
action diagram and add objects as well as methods on the fly while simulating
interaction that is required to address the requirements of a feature of a system
that these students are asked to build or extend.

We will show how the system works by describing the support for the prin-
ciples and challenges of the previous chapter.

3.1 Object interaction first

The core idea of COINED is that the students simulate the interaction in an
object-oriented system. When the users enter a project, they see an object dia-
gram containing all instances that currently exist in the simulated program (cf.
Figure 1–right).

The diagram in addition shows the interaction between the objects. A mes-
sage trace provides an alternative view of the dynamics in the system. Messages
that await a response are shown with a different color in the message trace and in
the diagram. To keep the diagram easy to read, students can control the number
of steps in the history that are shown in the diagram. All this contributes to an
object interaction based understanding of the simulated system (principle 1).



Fig. 1. Message history and interaction diagram in COINED

3.2 Messages are more important than methods

Each student can take responsibility for objects by becoming their director.
COINED will prompt the director of an object for actions whenever the di-
rected object becomes active (i.e., when it receives a message). To simulate the
application, the director of an active object can send a message to another ob-
ject. This will make the receiving object active and its director will be able to
look at the message and perform changes (including the possibility of sending
new messages to other objects).

Fig. 2. Message processing in COINED

Messages are processed in the message processing dialogue shown in Figure
2. While the diagram of Figure 1 is shared among all participants, the message



processing dialogue can only be seen and manipulated by the director of the
active object.

A director can respond to a message either with a reply message or with a
“does not understand”-signal (note that this is the message handling behavior
found in Smalltalk).

Whenever a director generated a reply message, the object remembers that
it has a method to invoke when a message with the same signature arrives. This
means that methods are derived from a successful message handling (principle
2). When such a message arrives again, the system shows the director how a com-
parable message was processed in the past. In addition, these message signatures
are added to the object’s interface.

3.3 Objects are more important than classes

Directors can agree to make similar objects instances of the same class. COINED
supports the required coordination by providing an embedded chat in Eclipse. In
this case, the interfaces of the objects are merged. A second reason for creating a
class is that the user feels the need to create a second instance that is comparable
to an existing first instance.

Note that objects “without” a class are connected to an implicit class. This
means that students will start with a blank object and extend this object when
needed. However, they are implicitly acting on the class that was created for the
new object.

Allowing classless objects is especially important when students start to sim-
ulate an object space in an early stage of the design. By interacting with classless
objects, they can express their ideas of what the object can do and understand
what others expect the object to do. This is an important learning process that
in a next step enables them to create real classes for such objects (principle 3).

As it was the case for simple objects, students can become directors of the
class and control all instances of the class. Interfaces are connected to the class
and message processing histories are aggregated for all instances of the class.

3.4 Objects know their interaction partners

Objects can only send messages to objects that they know (principle 4).The
system enforces this by allowing only local fields’ contents as message receivers.
The only exception for this rule is the delivery of an initial message: To start a
role play episode, any user can select an object and send an initial message to
this object. However, since this message comes from “nowhere”, there is no way
to store the result of this message in another object.

Since parameters, local attributes, and instance attributes are all together
presented as potential message receivers, it is always clear which objects are
known in the current context.



3.5 Encapsulation and overview

Restricting the interaction partners to those objects that are known in the cur-
rent context also helps to better understand the concept of encapsulation. Only
the director of an object can use and manipulate the content of a local attribute.
Encapsulation is enforced by this local view of the system.

The local view, however, poses a problem to the goal of providing an un-
derstanding of the interaction in the whole system. To reach this goal, students
should be allowed to see all objects, their relations, and theirs state in order to
follow the messages as they travel through the object network.

In COINED, we decided to provide the global view in the object interaction
diagram but enforce encapsulation in the interaction with the shown objects
(challenge 5 of the previous section). Since this is only a view, the students will
not be able to make use of the shown objects for processing a message. But the
global view of objects can provide hints on which objects need to be related and
used for processing a specific message.

3.6 Incentives: Code generation.

The goals mentioned in the previous sections lead to an interaction process
between the different directors that poses an additional overhead on them. The
restriction that an object needs to know an other object before it can send a
message to it is slowing down the message processing. One could argue that the
director (the human user) can see the full interaction diagram and without this
restriction call any object that he sees on the screen.

However, it is important to communicate that the COINED system has the
goal of substituting the computer as execution engine and thus keeps the human
user as close as possible to the computer as an execution engine. The benefit
from doing so is that the interaction logs can be used for two purposes: they
help the students to reflect on the interaction that they performed (challenge 8
in the previous chapter) and the provide the required data to generate code and
automate the message processing. The latter is the first step for transforming the
simulation into a real and running piece of software (challenge 9 of the previous
chapter).

COINED currently creates classes with all used methods and attributes. Al-
though this is not yet sufficient for capturing the object interaction in code, it
is a first step that can reduce the work required for a future implementation of
the simulated system.

4 Conclusions and Future Work

It is still a challenge to teach object-oriented software development. Problem-
based learning is a promising way for facing this challenge. In this paper, we
have investigated several object-first approaches and corresponding tool support



and concluded that most tools do not fully address the domain specific require-
ments of a full object-first approach. Especially, they often lack in supporting
collaboration as it would be needed to follow a PBL approach.

To overcome this deficit, we proposed the COINED system, a groupware
application that supports a group of students in a co-located or distributed
object role play. As all groupware systems, it combines a set of “intentional
group processes plus software to support them” [7]. The group process models a
role play between students where each student directs a set of objects with the
goal of react to messages sent to these objects. The supportive software visualizes
the interaction between the objects and further supports the discussion of the
object interaction and the creation of shared artifacts from interaction logs.

We are currently working on making the system available under an open-
source licence.2 First experiences showed that the system can be used to better
understand the roles of objects, especially in the early phases of design. However,
these experiences are up to now based on personal interaction that the authors
of this paper had with other students. We have not yet performed a formal study
on the effects of using COINED in regular courses. Such a formal evaluation is
planned as future work.

In addition, we ar currently investigating to what extent user interface simu-
lation can be supported with a comparable role play approach. The vision for an
extended system is that the students can simulate a full software system using
both user interface elements and internal objects.

With respect to code generation, this will face us with an additional challenge.
We will not only need to create a more complete code factory for the internal
domain object interaction but also connect this code to sketched user interfaces.

References

1. S. K. Andrianoff and D. B. Levine. Role playing in an object-oriented world. In
SIGCSE ’02: Proceedings of the 33rd SIGCSE technical symposium on Computer
science education, pages 121–125, New York, NY, USA, 2002. ACM Press.

2. J. Bergin, M. Stehlik, J. Roberts, and R. Pattis. Karel J. Robot A Gentle Intro-
duction to the Art of Object-Oriented Programming in Java. Dream Songs Press,
2005.

3. J. Börstler. Improving crc-card role-play with role-play diagrams. In OOPSLA
’05: Companion to the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 356–364, New York, NY,
USA, 2005. ACM Press.

4. K. B. Bruce. Controversy on how to teach cs 1: a discussion on the sigcse-members
mailing list. In ITiCSE-WGR ’04: Working group reports from ITiCSE on Inno-
vation and technology in computer science education, pages 29–34, New York, NY,
USA, 2004. ACM Press.

5. S. Cooper, W. Dann, and R. Pausch. Teaching objectsfirst in introductory com-
puter science. In Proceedings of the 34th SIGCSE technical symposium on Com-
puter science education, page 191195. ACM Press, 2003.

2 See http://www.pi6.fernuni-hagen.de/en/projekte/coined.html.



6. G. Jiménez-Dı́az, M. Gómez-Albarrán, M. A. Gómez-Martin, and P. A. González-
Calero. Software behaviour understanding supported by dynamic visualization and
role-play. In ITiCSE ’05: Proceedings of the 10th annual SIGCSE conference on
Innovation and technology in computer science education, pages 54–58, New York,
NY, USA, 2005. ACM Press.

7. P. Johnson-Lenz and T. Johnson-Lenz. Consider the groupware: Design and group
process impacts on communication in the electronic medium. In S. Hiltz and
E. Kerr, editors, Studies of Computer-Mediated Communications Systems: A Syn-
thesis of the Findings, volume 16. Computerized Conferencing and Communica-
tions Center, New Jersey Institute of Technology, Newark, New Jersey, 1981.

8. M. Klling, B. Quig, A. Patterson, and J. Rosenberg. The bluej system and its
pedagogy. Computer Science Education, 13(4):249–268, 2003.

9. N. Ragonis and M. Ben-Ari. On understanding the statics and dynamics of object-
oriented programs. SIGCSE Bull., 37(1):226–230, 2005.

10. D. Woods. Problem Based Learning: how to gain the most from PBL. McMaster
University Bookstore, Hamilton, ON, Canada, 1994.


